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ABSTRACT

It has been argued that knowledge-based systems (KBS) must reason from evidential
information —i.e., information that is to some degree uncertain, imprecise, and occasionally
inaccurate. This is no less true of KBS that operate in the domain of computer-based image
interpretation. Recent research has suggested that the work of Dempster and Shafer (DS)
provides a viable alternative to Bayesian-based techniques for reasoning from evidential
information. In this paper, we discuss some of the differences between the DS theory and
some popular Bayesian-based approaches to effecting the reasoning ta.sk.. We then discuss
some work on integrating the DS theory into a knowledge-based high-level computer vision
system in order to examine various aspects of this new technology that have not been
explored to date. Results from a large number of image interpretation experiments will
be presented. These results suggest that a KBS’s performance improves substantially
when it exploits various features of the DS theory that are not readily available in pure

Bayesian-based approaches.

Indez Terms: uncertain reasoning, evidential reasoning, belief functions,

knowledge-based system, computer vision, image interpretation.



1 INTRODUCTION

It is widely accepted that knowledge based systems (KBSs) that operate in complex
domains must “reason” from information that is to some degree uncertain, imprecise,
and occasionally inaccurate, called “evidential” information [25]. Furthermore, each body
of information is usually generically distinct and is typically obtained from a variety of
disparate sources, commonly called knowledge sources (KSs). The evidential information
that KSs provide is derived, in part, from imperfect perceptions of their environment. And
as such, can be viewed as partial evidence for or against the occurrence of semantically
meaningful events in some domain of interest. Given this reality, the degree to which a
KBS successfully deals with real world problems depends, in part, on the technology it

employs to reason from evidential information,

In this paper, we are concerned with the integration and evaluation of a technology
that KBSs might use to complete two fundamental tasks. One task is to reason from
evidential information in order to interpret (i.e., understand) the perceptions of its KSs.
The second is to decide how to allocate its limited resources in order to successfully
complete the previous task. That is, we must anticipate that the complexity of the real
world prohibits a KBS from understanding its perceptions in one fell swoop. Rather,
“control-related” information must be obtained in order to help make decisions about the
type, nature, quality, and quantity of the information that is required to interpret the
perceptions of KSs. In the work reported here, the control-related information that a
KBS must reason from is provided by control knowledge sources (CKSs). Similar to KSs,
the information that CKSs provide is derived, in part, from their perceptions of the state
of the system and or the environment. As a consequence, such control related information
is also evidential in nature. Thus, KBSs will be more successful at understanding their
perceptions to the degree they employ technologies that are better suited than current

techniques for reasoning from limited evidential information.
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Recent research indicates that Dempster’s rule for combining beliefs, and Shafer’s
theory of belief functions shows promise as a more viable alternative than some popular
Bayesian based techniques for addressing these problems (7], [34], [26], [14], [8], [27], [15],
[38], (1], (18], [17], [41], [42], [43], [44]. In addition, the work of Dempster and Shafer is
the basis of a developing concept called “evidential reasoning” (ER) [25]. This concept,
which we shall discuss later, is the foundation of our framework for addressing the above

interpretation and contreol problems in our domain of interest.

It is clear that the problem of reasoning from evidential information is comnmon to
many KBSs that operate in complex domains. However, we have chosen the task domain of
high-level computer-based image interpretation as the context within which to discuss and
present some of our work. Within this context, we shall discuss research on the application
of the DS and ER technologies to a KBS that is designed to interpret two-dimensional

monocular color images of outdoor natural scenes.

We begin the discussion by stating a major objective of general purpose high-level
knowledge-based image interpretation systems, Next we briefly describe the “origins” c;f
the evidential information that an image interpretation system must reason from in order
to co}nplete its tasks. Then we describe some of the difficulties with using probabilistic-
based approaches for reasoning from evidential information. Following this discussion, we
shall introduce Shafer’s theory of belief functions, Dempster’s rule, and contrast it with
some aspects of probability theory. Next, we shall acquaint the reader with Lowrance’s and
Garvey’s concept of evidential reasoning (ER) [25]. And after introducing this concept,
we shall describe our high-level knowledge-based image interpretation system that was
built to employ and explore some aspects of both the Dempster-Shafer (DS) theory and
ER technology. Finally, results of interpretation experiments will be presented followed

by a discussion of related and future work in this area.

We mention, here, that our emphasis throughout this paper shall be on the underlying

technology a KBS might use to reason from evidential information. For examples and a
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more extensive review of computer vision systems see, for instance, Nagao and Matsuyama
[28], Binford [3], Havens and Mackworth {20}, Selfridge [33], Brooks [4] Sloan [37], Hanson
and Riseman [19], Levine {23], and Levine and Shaheen [24]. '

2 IMAGE INTERPRETATION OBJECTIVES

An example of a typical complex outdoor natural sceme that a general purpose
knowledge-based image interpretation system might be expected to understand is shown
in Figure 1. An objective of such systems is to identify semantically meaningful visual
entities in a digitized and segmented image of some scene. That is, to correctly assign
semantically meaningful labels (e.g., house, tree, grass, and so on) to regions in an image
— see [29], [30]. A computer-based image interpretation system can be viewed as having
two major components, a “low-level” component and a “high-level” component [19], [31].
In many respects, the low-level portion of the system is designed to mimic the early stages
of visual image processing in human-like systems. In these early stages, it is believed that
scenes are partitioned, to some extent, into regions that are homogeneous with respect to
some set, of perceivable features (i.e., feature vector) in the scene [6], [40], [39]. To this
extent, most low-level general purpose computer vision systems are designed to perform
the same task. An example of a partitioning (i.e., segmentation) of Figure 1 into homoge-
neous regions is shown in Figure 2. The knowledge-based computer vision system we shall
describe in this paper is not currently concerned with resegmenting portions of an image.

Rather, its task is to correctly label as many regions as possible in a given segmentation.

It is clear that no segmentation is perfect. There will be regions that overlap se-
mantically distinct visual entities. Or there might be regions that are over segmented —
i.e., multiple regions that partition a single semantic entity. These anomalies are due,
in part, to several unavoidable realities of the visual domain. Imaging machinery will
simultaneously lose meaningful information and introduce bogus information - e.g., noise
and or distortion. Thus, the data from which a segmentation must be produced is an

imperfect abstraction of the scene a system is expected to understand. Second, semantic



4
information about objects in a scene cannot be contained entirely in the image data. And
as a consequence, some regions will partition a single visual entity. And still other regions

may enclose multiple semantically distinct visual entities.

In the KBS we shall be describing, KSs extract a variety of image feature information
from a subset of regions in a segmented image — e.g., spectral, texture, shape, and spatial
attributes of regions. Based on their perceptions, KSs form opinions about the presence
and or absence of features they are capable of observing. What logically follows is that
beliefs that are based on these opinions will be imperfect. And at best such opinions can
be viewed as only evidence to suggest the presence or absence of semantically meaningful

entities in a particular scene of interest.

Given this reality, how might a system represent the evidential information it obtains
from KSs? And how might a KBS reason from this evidence more effectively than current
approaches permit? Let us begin to answer this question by briefly reviewing current

approaches.

2.1 CURRENT APPROACHES TO REASONING

Some of the problems with reasoning from evidential information are common to many
domains other than computer-based image interpretation. Many of the currently popular
approaches for addressing them are probabilistic in nature. That is, probabilities are used
to represent belief in propositions and Bayes rule or an ad hoc variant thereof is typically
used to update a system’s belief in propositions based on new bodies of evidence. See,
for instance, the work on systems like VISIONS [19], Prospector [10], MYCIN [36], and
Gorry’s computer-aided medical diagnosis system [18]. The problems with probabilistic
based approaches are well known and continue to be discussed in the literature [35], [26],
[21]. However, let us briefly state a few of the problems that motivated our exploration

into alternative theories.
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One concern with probabilistic based models is with their voracious appetite for data.
Where H and e represent some hypothesis and body of evidence, respectively, in order
to use the inversion formula of Bayes rule we must have some prior belief P(H), Ple),
and likelihood P(e|H). It is well known that the complexity of real world domains makes
it difficult, at best, to obtain or reliably estimate such beliefs and likelihoods. Some have
countered by saying that a complete probability specification is not required {32]. Rather,
one need only estimate the odds or likelihood-ratio — see [32]. Our concerns with this view
is that a large number of likelihood-ratios still must be provided, and that the problems
of not having a uniform represention of ignorance and being able to distinguish disbelief

from no belief also remain.

In a probabilistic approach, one typically represents ignorance in a set, say ©, of

mutually disjoint propositions by the following probability distribution Pp:

Po(0) = = (1)

0(8) = 57-

sco’ 8l
If it becomes necessary to change © to ©', where |©| # |©’|, then our numerical
representation of ignorance must also change. Such a change might have been induced by
the acquisition of additional evidence. If this is the case, by what theory does.one reconcile
or interpret the disparity in the representation of ignorance in © and @'? It is important
that a system capable of dealing with such disparities, particularly when it happens to be

equally ignorant about some 0 € ©, and the same § € &', but Fy(6) # Po(d) -
feco fee’

The additivity constraint
P(A) + P(-4) =1 (2)

imposes some undesirable restrictions on a system’s ability to distinguish disbelieffrom no
belief in the truthfulness or falseness of a proposition. If our belief in 4 happens to be, for
instance P(A) = z, then we are forced to believe to a degree of 1—P(A) = P(-A)=1-=z

that —.A4 is true. It might be the case, however, that we have no evidence to indicate ~A
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is true or A is false to any degree. Thus, we must adopt beliefs for which we have no
evidence to support. And as a consequence, we cannot distinguish, in a nice single formal

representation, disbelief from no belief.

To suminarize our concerns, a pure probabilistic based approach to reasoning in com-
plex domains is overly restrictive. It is difficult to specify a complete probability dis-
tribution over the propositions of interest due to the enormous number of micre events
that must be taken into account. And as a consequence, pure probabilistic approaches
are typically compromised by making ad hoc modifications to Bayes’ rule in order to deal
with these restrictions — see for instance [9], [10]. A formal and uniform representation of
ignorance remains unavailable. And we cannot distinguish disbelief from no belief. These
are a few of the unwarranted constraints that have motivated us to seek alternative ap-
proaches to these problems. The results of our efforts have led us to investigate some of
the work of Arthur Dempster and Glenn Shafer — commonly called the Dempster-Shafer
(DS) theory [7], [34].

3 THE DEMPSTER-SHAFER THEORY

We can view the problem of reasoning in complex domains as one of trying to answer
a particular question of interest. For instance, in the computer vision domain a system
might be asked to solve the problem of identifying an object in some region of interest. A
typical question might be which of the following disjoint propositions, say #; and 85 is
true: The region is a house (f1) or The region 18 a barn (f2}? Or in other words, which
label hypothesis, house or barn, should be associated with the current region of interest?
A system must answer this question, in part, by obtaining and pooling the appropriate
beliefs that would allow it to discern a house from a barn. Then the problem is solved -
i.e., the question is answered — to the extent a system is capable of successfully obtaining

and pooling such beliefs.
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In Shafer’s theory, the degree of belief, Bel, that one should accord a proposition is

represented as a number between zero and one, Suppose © is a finite set, and we denote

the set of all subsets of © by $(©). Then'if Bel satisfies the following conditions:
(1) Bel{@)=0.
(2) Bel(®)=1.

(3) For every positive integer n and every collection Aj, ..., Ay of subsets of 6,

Bel(A1U...UAg) 2 3 Bel(4)— Y Bel(A;nAj)+—...+(~1)"" Bel(A1N...NAn), (3)
i i<j

then Bel is a belief function over ©. Within the context of Shafer’s theory and with
respect to this simple example, & = {01, 03} and is called a freme of discernment. It
is clear that what constitutes © and how it is used is crucial to the success of problem
solving systems. Therefore, let us provide more background about a frame of discernment

before .returning to our discussion of belief functions.

3.1 FRAME OF DISCERNMENT

Suppose we are presented with a question and a finite set, ©, consisting of possible
answetrs to the question, only one of which is the correct one. Then for each # € © the
propositions of interest are precisely those of the form “The correct answer is 8y ?, “The
correct answer ts 0y ®, ... ,“The correct answer ts 0, ”, and so on for n = |6|. Simply
stated, a set is called a frame of discernment when its elements are interpreted as possible
answers to a particular question, and we know that exactly one of these answers is correct.
And what logically follows from this statement is that the set of all propositions of interest

are in a one-to-one correspondence with the set of subsets of ©, —i.e., §£(0©).
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A frame of discernment is epistemic in nature. Its meaning and justification for
existing lies in the knowledge and evidence that is brought to bear in order to discern the
correct answer — i.e., which singleton proposition in © is true. One will be able to identify
the correct answer to a question only to the degree that a frame adequately captures the

relevant interaction of such knowledge.

Consider the large amount of information that is typically required to answer any
particular question in the real world. For example, suppose a robot were trying to answer
the question what is the object currently in its field of view. A set of possible answers
to this question might be “A House”, “A Barn®, “A Tree”, and so on. Examples of
knowledge that might be brought to bear on this question are: the shape of houses, barns,
and trees; the texture of each object; the spectral attributes of houses, barns, and trees;
and perhaps the spatial relationships between these objects. Each example just given is a
generically distinct type of knowledge and, by itself, can be viewed as a relatively “small
world” of knowledge compared to the total amount that is usually needed to answer this

and more complex questions.

The propositions contained in each distinet body of knowledge might relate quite
differently to subsets of the possible answers. For instance, with respect to shape, if the
proposition The region contains many lines meeting at obtuse angles to one another were
true, then we would want to admit that it is possible “A House® or “A Barn” is the
correct answer and that “A Tree” is not. Similarly with respect to texture, houses and
barns might be relatively less textured than trees. Then if the proposition The region 1s
refatively smoothly teztured is true then we would want to further admit that “A House”

or “4 Barn”® is possibly a correct answer and “A Tree” is not.

In this example, each proposition in each distinct small world can be viewed as a
“feature proposition” (e.g., “The region is relatively smoothly teztured”) that might help
to discern which answer is possibly correct. The set of all feature propositions in a

small world constitutes a “feature space” (e.g., the texture feature space). Each feature
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space can be thought of as containing at least one proposition that is associated with
some observable and quantifiable aspect, called a “feature value”, of the related chunk of
knowledge (e.g., the average number of obtuse angles formed by straight lines in a region).
The set of all feature spaces of potential interest constitutes an “environment.” And in
general, this includes any aspect of a domain or world about which information may be
obtained in order to help decide which answer is correct. With this partial background

we can present a more formal description of a frame of discernment.

3.1.1 A formal view. Let the set of mutually exclusive and exhaustive possible

interpretations of an image be represented by the set ©g , where

eQ ={91! f2, ..., Bn}‘ (4)

We can associate with each §;, 1 <1 < n, a proposition that represents an interpretation
- e.g., #1 might be associated with the proposition The image is a house scene, §2 might
be associated with the proposition The image is a tree scene, or #2 might be associated

with the proposition The image is a house and tree scene, and so on.

Let Fy,Fs,...,F;n correspond to the feature spaces of interest — e.g., F; might
correspond to the spectral features of objects, 5 might correspond to the texture features
of objects, and so on. Associated with each F;, for 1 <1 < m, is a set 7 of possible

feature values of F;,

Fi= {f‘k | f‘k is a possible feature value of Fy, for 1 < k < |#|}. (5)

For example, if 7; is the set of feature values for the texture feature space Fj, then
f11 may correspond to a relatively smooth texture value, as might be characteristic of
objects such as sky or paved road. Similarly, _fl2 may correspond to a relatively rough
texture value, as might be characteristic of objects such as tree crowns, or grass. Like each

8; , we can also associate with every f“-“ a proposition that describes a possible cutcome
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as a result of performing a perceptunal operation—e.g., f} might be associated with the
proposition The image contains relatively rough teztured regions, f12 might be associated
with the proposition The tmage contains relatively smooth textured regions, or ff might

be associated with the proposition The tmage contains both reletively rough and smooth

textured regions, and so on.

For each fF € 7 it is possible to identify a subset of ©g that possibly contains the
{ ‘ Q

correct interpretation when f‘k 1s observed. For instance, let ©g be defined as follows:
©q = { tree crown, sky, grass, paved road}. (8)

Let fll and flz correspond to the texture feature values just discussed. If observations by
a texture KS indicate that the proposition The fmage contains relatively smooth textured
regions (i.e., f12 ) is true, then it is possible that the region of interest should be labeled sky,
or paved road and should not be labeled tree crown, or grass. Conversely, if observations
by a texture KS indicate that the proposition The image contains relatively rough teztured
regions (i.e., fi) is true, then it is possible the measured region should be labeled tree

crown, or grass and should not be labeled sky, or paved road.

Given that we can identify a subset of ©g that is possibly the correct answer for a
question of interest when a feature f:‘ € 7; is observed, The set ©g can be generated
by a characteristic set funct.ion-that is defined over the space of feature propositions of
interest — i.e., the f{‘s € ¥;s. That is, we can define a distinct function y; over each
to be:

xi: % — P(9g), (M
such that

| x(F) =eq. (8)
Jfex;
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xi is called the characteristic set function of %;, and x( f:‘) is called the characteristic

set of f"-" . An example characteristic function for our example above might be:

1) x(The region is relatively smoothly textured) = {sky, paved road} ;
2) x(The region is relatively rough) = {tree crown, grass}.

A frame of discernment, then, can be defined in terms of a set ©¢g and a collection of

feature spaces and their characteristic set functions.

A frame is said to be internally complete if every element of B can be realized as

an intersection of characteristic sets. Note that if perfect information is available (i.e.,
every feature proposition is either true or false) and B¢ captures the relevant interaction
of our knowledge and available evidence, then drawing inferences over ©g amounts to
computing set intersections. For instance, with respect to the question which proposition,

§ €8q, is true:

1) if f{‘ is true then the correct answer (i.e., the proposition 8 € 8¢ that is possibly

true) les in x; (fF);
2) if fé" is true then the correct answer lies in x2( fé") .

And as a consequence, the combined correct answer is contained in

x1(FF) nx2 (). (©)

3.2 CONVEYING OPTNIONS

In this scheme a KS might convey its opinion about the degree to which it believes

feature propositions are true or false through the following “mass function” M :

M:P(©qg)—[0,1], where M(#) =0, (10)
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and

Z M(A) = 1. (11)

ACEq

We note here that a Bayesian probability distribution m:

m:8g — [0,1], where E m(f) =1, (12)
de8g

is just a special case of a mass function. And that both A and m satisfy the conditions
of equation 3, and are belief functions over ©g . The implication of this statement is
that if a complete probability specification is available, then the DS theory is capable of

integrating this information with other bodies of evidence.

Each body of evidence induces an interval, called an “evidential interval”, within
which belief about a proposition must lie. An evidential interval is a subinterval of the
real interval [0,1]. The lower and upper bounds of the evidential interval shall be called
the support (Spt) and plausibility (Pls), respectively. The Spt represents the total

mass that tends to support a proposition:

Spt(B) =Y M(p). (13)

pCEB

The Pls represents the degree to which the mass fails to refute the proposition.

Pls(B)=1-Spt(-B)=1- Y M(p). (14)
pC—B

The degree to which the mass refutes a proposition is called the dubiety (Dbt).

Dbt(B) = Spt(-B) = 1- Pls(B). (15)
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The degree to which no mass tends to support a proposition or its negation is called

ignorance (Igr).

Igr(B) = Pls(B)— Spt(B).

The interpretations of some evidential intervals are surnmarized below:

Completely true proposition [1,1];
Completely false proposition [0,0];
Completely ignorant about the proposition [0,1];
Tends to support the proposition [Spt,1], 0 < Spt < 1;

Tends to refute the proposition [0,Pls], 0 < Pls < 1;

Tends to both support and refute the propesition [Spt,Pls|, 0< Spt < Pls < 1.

(16)

Note that with a mass function a KS is able to express its beliefs at any desired

precision or certainty —i.e., a source can express beliefs by attributing any amount of mass

to any proposition it desires. In addition, an evidential interval allows one to distinguish

disbelief from no belief, unlike a pure point probabilistic representation. And finally, an

evidential interval provides a single formal and uniform representation of ignorance — i.e.,

the interval [0, 1| always represents total ignorance across model variations.
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3.3 COMBINING BELIEF (MASS) FUNCTIONS

Given the complexity of the real world, it is unlikely that a single source of information
will be capable of providing independent beliefs (i.e., opinions) about the truthfulness or
falseness of feature propositions. Rather, a more pragmatic approach is to have multiple
distinet KSs express opinions about their perceptions by attributing a portion of their unit
mass to feature propositions. In this approach, we need to be able to form a consensus
" opinion by combining multiple mass functions. In the theory of belief functions, the tool

for carrying out this pooling process is Dempster’s rule [7].

3.3.1 Dempster’s runle. Dempster’s rule tells us how to take two mass distributicns
M , M2 and produce a third mass distribution M3 that represents a consensus opinion

of two distinct sources, and is defined to be:

Forall By,B;,B3C©q, Ms(Bs)=(1-K)™1 >  M(B)M(B2),
B1NBy=8B4 ( )
17
for K = Z Ml(B]_)Mg(Bg) <1,
BiNB;=H

where K is the total amount of conflict between M; and Mz, and (1 —K)" 1 isa

renormalization factor.

Using Dempster’s rule to combine mass distributions accomplishes three functions.
The first is to obtain a consensus about what answer each source believes is possibly
correct. If both opinions are completely consistent, there is at least one answer that both
sources agree is correct, and it can be said they are expressing totally compatible opinions
—i.e., K = 0. Conversely, if beliefs are not completely consistent, then their opinions are
not totally compatible and there is at least one answer the sources disagree is appropriate—
i.e.,, 0 < K € 1. In general, to the degree that sources are certain, precise, and accurate

with respect to their observations, their opinions about which answers are correct will
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be compatible. Dempster’s rule determines simultaneously if there is any ¢ € ©¢g that
multiple sources agree is true and provides a measure of compatibility among the opinions

they provide.

The second function of Dempster’s rule is to correct for minor errors. The assumption
here is that there is only a negligible likelihood that distinct sources might introduce the
same type of error into their opinions simultaneously — i.e., that they are stochastically
independent. Therefore, such errors can be overcome by a sufficient amount of redundant
and generally correct beliefs. If a subset of sources make gross errors, such bad information

should be discounted, when detected.

The third function of Dempster’s rule is to compute the minimum degree of support
that should be attributed to compatible opinions, if such an opinion exists. In a sense,
the multiplicative nature of equation 17 computes the minimum commitment of support
one should attribute to compatible opinions that were provided from independent sources.
But the requirement that sources be independent is crucial to the applicibality of the rule

and is discussed in the following section.

3.3.2 Independence. Consider the following excerpt from the paper that describes

the independence requirements of Dempster’s rule [7].

... Opinions of different people based on overlapping experience could not be regarded as
independent sources. Different measurements by different observers on different equipment
would often be regarded as independent, but so would different measurements by one

observer on one piece of equipment: hLere the question concerns independence of errors.”

Our reason for presenting this excerpt is to emphasize that the independence constraint
that must be satisfied before Dempster’s rule is potentially applicable is with respect to
the errors multiple sources might make. And despite that fact that this point has been

made in the mathematical literature, it has escaped recognition by a significant portion
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of the artificial intelligence community that relies, to some degree, on the DS calculus for

reasoning from evidential information.

This notion of independence is quite different from that which typically comes to mind
during discussions of classical probabilistic models for pooling information. The classical

definition of stochastic independence for n events, F, is defined as:
n n
PO B) =TT P(&). (18)
i=1 i=1

But we must be careful when we try to interpret this equation in the context of “... here
the question concerns independence of errors.”, [7]. This is so because both the Bayesian
theory and belief function theory treat chance in different ways, and as a conseguence

their concepts of independence are slightly different.

Consider two propositions A, B C ©¢ that, for the moment, happen to be false with
respect to a particular frame and bodies of evidence. Now let Ej be the event that KS
attributes a non zero amount of mass in support of A. And let E; be the event that
KS; attributes a non zero amount of mass in support of B, where AN B # # and
1 £+¢%# k <n. That is, for a particular frame both KSs have simultaneously errored
in their assessment of some body of evidence. Then P({EjnN E;) is interpreted as the
probability or chance that both KS; and KS; will simultaneously express opinions that

are compatible and erroneous.

If a frame of discernment has taken into account all significant dependencies then the
left hand side of equation 18 will, as a consequence, be zero. Alsc notice that this does
not mean that all sources must be error free in order for this equality relation to hold. It

is only necessary that at least one P(E;)=0.

Under less than ideal conditions we need to augment the meaning of an event E;

slightly. The reason is because noise is random in nature, and as a consequence we must
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anticipate that equation 18 will not always be zero. Thus a more realistic concern is with
the probability or chance distinct sources will simultaneously introduce errors above some
noise threshold, say t, into their opinions. Now we can interpret an event Ep to mean
that KS; will attribute an amount of mass (i.e., support) mj(A) > v, given that a
source KS; will attribute an amount of mass mg(B) < v; where 0 <t < v;,v; <1 and
ANB # @. Then P(E}) can be interpreted as the a priori probability or chance that KS;
will introduce errors larger than v into its assessment of some body of evidence. That
is, we are only concerned with the chance that independent sources will simultaneously
introduce errors above some “noise” level in their opinions. We have shown how one can
determine the maximum amount, v; for instance, of mass that KS; can attribute to a
false proposition, say A, and keep the total amount of Spi(4AN B) below some level s,

given that KS; attributes an amount of mass in support of, say B, below v; [44].

With respect to both the Bayesian and DS technologies, as well as many others, one
tries to make the relevant dependencies of the current problem effectively independent
within the context and constraints of each theory. Accomplishing this makes the machinery
of each model potentially appropriate to use. With this background we are now ready to

acquaint the reader with the concept of evidential reasoning.

4 EVIDENTIATL REASONING

The concept of evidential reasoning (ER) was introduced by Lowrance and Garvey
[25]. This evolving technology starts from the position that the acquisition of information
by KBSs involves making imperfect perceptions of the environment. A KBS “understands”
its world by perceiving it through a set of KSs. And because a gystem’s perceptual
machinery is not flawless, it follows that the information the KSs provide will be to some
degree uncertain, imprecise, and occasionally inaccurate — evidential in nature. This
concept currently relies on the DS formalism as its model for representing and pooling
KSs’ beliefs that are based on their environmental perceptions. Thus the DS formalism is

fundamental to ER-based models that KBSs might uge to reason in their task domain.
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There are two distinct reasoning processes that must be completed in this concept.
One is to take a single body of evidence and propagate its effect from those propositions
the evidence bears directly upon to those it indirectly bears upon, This allows inferences
to be drawn about those propositions not directly affected by the evidence, This process is
typically carried out by what is commonly called an inference engine. The other process,
one that pools multiple bodies of evidence into a single body of evidence that represents

a consensus opinion, is Dempster’s rule which we have already described.

We can summarize these processes in terms of a KBS’s two computational require-

ments, which for B,C C 8¢ are:
1.) Combination of multiple M ’s:

a) Apply Dempster’s rule to M; and M3y to produce a consensus opinion that

is reflected in M3 = M; @ M, .
b) If BNC # @, then add M;(B) * M3(C) to current M3(BNC).

c) f BNC =40, then add to current k.

2.) Extrapolation: Taking the result of Dempster’s rule (i.e., M3) and computing

the Spt and Pls of the remaining dependent propositions.
a) If BC C then add M(B) to current Spt(C).
b) f B C —C then add M(B) to current 1 — Pls(B).

With this fairly extensive discussion of Dempster’s rule, Shafer’s theory, and the concept
of evidential reasoning, we can now introduce our evidential-based high-level computer

vision system (EHCVIS). After which we shall show how we have used both the DS and

ER technologies to reason in our task domain.
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5 EHCVIS

A flow diagram of EHCVIS and a generalized illustration of its architecture is shown
in Figure 3. We do not claim that the architecture of our system is ideal for a high-level
computer vision system — see, for instance, Levine for a discussion of a general design for
computer vision systems [24]. Rather, the design we have chosen is one of perhaps many
that might be adequate for interpreting images and exploring various aspects of the DS

theory.

As indicated by the figure, EHCVIS can be described in four phases. The task of the
first phase is to use the specifications of goals to help complete two subtasks. Examples
of goals the system might try to reach are finding a house, locating the ground plane, or
obtaining additional information to help resolve some ambiguity the system might have
about the identity of objects in a region of interest. The first subtask is to use goal
specifications to generate a set of alternative actions the system might pursue in order to
reach that goal. The second subtask is to use goal specifications to select control strategies

that will be used to help decide which alternative action is more appropriate to pursue.

The second phase can be summarized in several steps: (1) with the alternative actions
and control strategies that were selected in the previous phase, dynamically build the
contro] knowledge (i.e., © 4 ) that will be brought to bear on the problem of deciding which
alternative to pursue; (2) implement these control strategies, in part, by obtaining control
related information from independent control knowledge sources (CKSs); and (3) pool
these beliefs using Dempster’s rule and then use an inference engine to take the result of
Dempster’s rule and infer which action is the best to pursue. Note that in the third step
of the second phase (see Figure 3) beliefs are pooled and inferences are drawn over the
frame denoted by © 4. This is to indicate that the DS technology is used by our system

to reason about its actions,
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In the third phase, our system takes the action suggested by the second phase. A
typical action might be to task a subset of available KSs to make some observation about a
particular subset of regions in an image, then express some beliefs aBout their perceptions.
After the KSs have done this, Dempster’s rule is used to pool their beliefs and then
inferences are drawn over ©g to infer which propositions (i.e., label hypotheses) in ©g

should be associated with the region under examination.

In the last phase, the results of the inferences drawn over ©¢g are evaluated. Based
on this evaluation the system might decide that a new goal should be satisfied and return
to the goal generation phase. Or that the interpretation process should be terminated.
Or that the system should “instantiate” (i.e., record in a dynamic representation called
short term memory, STM) its belief that a subset of the label hypotheses in ©¢g should be
associated with a subset of the regions in an image, and then set new goals to be satisfied.

Let us briefly discuss each phase in more detail.

5.1 PHASE ONE:

5.1.1 Goals, EHCVIS begins the interpretation process when a goal is placed
on a goal stack. Every goal contains three parts: {1) a symbol that indicates a goal-
name or goal-identification. For example, verify-kas, and reduce-ignorance-about-
a-hypothesis are examples of symbols that indicate the goal of verifying the preception
of KSs, and indicate the goal of reducing the system’s ignorance about the truthfulness or
falseness of a label hypothesis, (2) a specification of a set of KS selection constraints; and
{3) a specification of a set of region selection constraints. The KS selection constraints
specify attributes of KSs that must be satisfied before the system will consider them as
potential sources of information. Similarly, the region selection constraints specify charac-
teristics that regions must possess before the system will consider obtaining information
about them. For instance, when the system begins the interpretation process it is totally

ignorant about the identity of objects that are depicted in an image. One “start-up”
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goal might be to obtain preliminary information about a subset of the regions in the im-
age. It might be desirable to satisfy this goal by tasking the most reliable KSs to obtain
information about “unusual” regions — i.e., regions exhibiting features that might cause,
say a human, to foveate to upon initial examination of an image. An example of how such
a goal and its selection constraints might be specified is shown in Figure 4. The symbol
start-up, in Figure 4 indicates that the system should try and reach the goal of obtain-
ing preliminary information about some region in an image. The symbol rel in the list
(rel 0.7 1) of the KS selection constraint portion of the start-up goal indicates that
this constraint pertains to the reliability of KSs. And the interval (... 0.7 1) indicates
the range within which the reliability of a KS must lie before it iz considered a potential
source of information. How the reliability of KSs might be determined is not of interest

at the moment and is discussed in more detail in [44].

Upon initiation of the interpretation task it might be desirable to focus attention on
unusual regions — e.g., regions that are relatively large, relatively bright or dark, or at
some extreme location in an image. Suppose our system is initially interested in relatively
large regions at a relatively high location in an image. The following region selection

constraint might be used to specify this interest:

(conj ((loc-above x y)

(size min-size max-size) ...)).

Where (coni {({loc-above ...) (size ...) ...)) means a region becomes a poten-
tial candidate for examination if its location is above some minimum x y position in the
image and its.size is within the range (... min-size max-size). The shaded region
of the image in Figure 4 exemplifies the result of applying a similar constraint to an image

that has been interpreted by our system.
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5.1.2 Generating Alternatives, The output from the KS and region selection

process is a list of KSs to possibly task and a set of regions in the image these KSs might
be asked to obtain information about. It might be necessary or desirable to task multiple
KSs from the list of candidate KSs — e.g., KS ;AKS 3 — on a collection of regions — e.g.,
Rs U Rsp. If welet k£ and r represent the list of selected KSs and regions respectively,

the system generates the sets:
KCc®(k) and Rc(r). ' (19)

A typical £ € K, might be the set {KS;, KSs}, and should be interpreted to mean
KS8) A KSy. Similarly, a typical p € R, might be the set {R3, R4, RG} , and should be
interpreted to mean R3U RjsUHs. If & and or r are large, the pragmatics of generating
K and R could be prohibitive. However, in practice we might know a priori that some
KSs cannot be simultaneously tasked, thus eliminating some possibilities. Sometimes
the KS or region selection constraints might keep the size of k£ and r relatively small.
Other times, however, k¥ and r can remain relatively large. When this is the case,
EHCVIS randomly choose a manageable subset of k and r to work with. The size of the
subset chosen is a function of the available computational resources. And we have pointed
out that systems must perform a similar operation when the amount of data becomes

overwhelming and the information to help prune the choices is not available [43].

Once K and R have been generated the frame of discernment, © 4, from which

EHCVIS must choose an alternative is defined to be:
84 C {invoke—} x K X R. (20)
For example, consider the following propositions in &4 :

© 4 = {fnvoke — KS; A KSs — R3,
(21)
tnvoke - KSs A KS1 AKSy — RasURyy, .. .}.
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We interpret an alternative, 8 € © 4, of the form invoke— KSiA...AKSp— R1U...UR;
to mean task KS; and KS; and ... and KS, to simultanecusly obtain information
from the region formed by Rj U Ry U...U By - i.e., the region formed by the union of
P, and B and, ..., and Ry . But given a set of alternatives, what control strategies

might a system employ to help decide which alternative to pursue?

5.1.3 Control strategies, EHCVIS has eleven “primitive” control strategies which

can be used to help decide which alternative action to pursue. One primitive control
strategy is to obtain information in support of or against hypotheses for which the system
is most ignorant about. This strategy might be used to reduce the system’s ignorance
in the truthfulness or falseness of a label-hypothesis. A second strategy is to obtain
information that will help to reduce the system’s ambiguity about the truthfulness or
falseness of a subset of label hypotheses in ©5. More complex control strategies are
formed by “merging” two or more primitive control strategies. The details of this merging

process will be discussed shortly.

Currently, EHCVIS uses a simple “table-driven” scheme to decide which control
strategies should be used. For each goal the system is expected to reach, there is an
entry in a table that lists a subset of the available primitive control strategies that should
be used to help reason about what action to pursue. For example, with respect to the
start-up goal, EHCVIS’s table currently indicates that two primitive control strategies
should be simultaneously used: the strategy of invoking the most reliable KS, and the

strategy of obtaining information about hypotheses the system is most ignorant about.

A more complex strategy is specified by enumerating two or more primitive control
strategies in this table. Now let describe how they are effectively implemented within our

control framework.
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5.2 PHASE TWO:

5.2.1 Building ©4. Each primitive control strategy can be viewed as a “coﬁtrol
feature space.” Each control strategy is associated with a small world of control knowledge
that might be brought to bear on the question of which action to take. Suppose we let
F) represent the control feature space that is related to the reliability of KSs. Then
within the context of the DS theory, we must enumerate the set, 7, of control feature

propositions that are associated with F}, and then define the characteristic function:
x1: 51— P(64). (22)

EHCVIS enumerates 7;s and constructs x;s dynamically because, unlike ©g, the set
of alternative actions a system might pursue, as represented by © 4, typically cannot be

know a priori.

EHCVIS dynamically builds © 4 in the following manner. Suppose a;, ag, and aa

correspond to the following alternativesin © 4 : .

@4 = {invoke — KS) A KSy — B3 (a1),
invoke — KSs A KS1 A KS3 — R3 U Ry (az), (23)

tnvoke — KS5 A KS1g — R4 (0.3)}.

Then the following control feature propositions of 7; will be dynamically constructed:

fL: The most reliable KSs are KS, and KSp;
f2: The most reliable KSs are KSs and KS; and KSy;

ff’ : The most reliable K83 are KS; and KSigp.

The reason these particular propositions have been enumerated is that prior to obtaining

any information about the reliability of KSs, it is possible the KSs specified in each

alternative might actually be the most reliable. Therefore each ff' € 7, where 1 <
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k < |#|, reflects this possibility, and it is the task of a CKS to dynamically measure this
control-feature and then express its belief about which action, if taken, would result in

tasking the most reliable KSs.

The function ¥; can be defined, in words, to be as follows. For each flk € 71 extract
the KSs the control-feature proposition claims is the most reliable — e.g., ff’ claims K Sy
a.nd‘ K 810 are the most reliable. Then include in the characteristic set of each f{‘ those
actions that specify the same set of KSs. For example, x1(f1) = {a1}, x1(f%) = {a2},

and x1(ff) = {as}.

If there were a fourth alternative, say a4 € © 4, that was defined to be snvoke — KS; A

KSy — R3 U R, then the characteristic set of fl would be x1(f}) = {a1, as}.

If our reliability CKS believes that KS; and K51 and KS; are the most reliable,
then it may express this belief by attributing a portion of its unit mass in support of f12 .
Attributing more mass to fl2 the more it believed f12 to be true, and less mass the less
it believed flz was true. Or alternatively, attributing more mass to — fl2 the more it

believed fl2 was not true,

Similarly, if the same CKS believes that KS; and KS; and K5 or KS; and
KS1p are the most reliable, then it may convey this opinion by assigning a portion of its
unit mass in support of the disjunction fl2 v ff’ . Our reliability CKS may express total
ignorance about which KSs it believes are the most reliable by assigning all of its unit -

mass to the disjunction fll v f12 v f13 -ie., 64.

Now consider a second primitive control strategy of obtaining information about re-
gions that the system has the least information about. Again, associated with this strategy
is a control feature space, say Fy, and a related set of control feature propositioﬁs .In
this case, each fé‘ € F; would be of the form, for example, The region the sysiem knows

the least about is Rz, and so on for 1 £ k £ |#|. Next the system would define x2
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in a similar manner as it defined x; except that it would be with respect to the regions
specified in each feature proposition and alternative. And our “region ignorance” CKS,
like our reliability CKS, would be free to express any degree of support for or against any
proposition or disjunction of propositions it desires. Now the frame ©,4 in this simple

example is defined to be:

2
64 = | x:(fF). (24)

=1

And as a consequence of defiring more than one characteristic function with respect to the
same frame of discernment, a more complex control strategy has effectively been defined.
That is, the strategy of tasking the most reliable KSs on the regions the system is most

ignorant about.

If a frame of discernment is the mechanism by which complex control control strategies
are defined. Dempster’s rule is the machinery by which they are effectively implemented.

If our reliability CKS believes the proposition f11 v f12 is true and our region ignorance

CKS believes the proposition f22 v fg’ is true then Dempster’s rule determines if there
exists an alternative action that both CKSs agree is appropriate to take. This is accom-
plished by intersecting the characteristic sets of the two propositions. In this instance, the
action ag is the only alternative both CKSs agree the system should pursue. Thus, we
have implemented the more complex strategy of tasking the most reliable KSs on regions
the system is least knowledgeable about. In cases where a consensus opinion does not
exist, Dempster’s rule informs the system of this via its conflict measure k. When k&
becomes relatively large, a system must consider four possible causes: (1) one or more
CKS expressed inaccurate opinions; (2) the frame is incomplete (i.e., some alternatives
are missing from the model); (3) the goals are not satisfiable; or (4) a combination of the

previous three.
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5.2.2 How CKSs make measurements and convev beliefs., Consider two dis-

tinct types of control related information that CKSs might cbtain:

1) IGNORANCE-( Igr): the total amount of evidence that neither supports nor
refutes the truthfulness of a label hypothesis.

2) AMBIGUITY-( Amb): the total amount of evidence that fails to support or

refute choosing a label hypothesis over its negation.

We defined the ignorance measure of a proposition, say p € ©¢, in equation 16. The

ambiguity measure for a proposition, e.g., p € ©¢, is defined as:

Pls(p) — Spt(-p), for Pls(p) > Spt(-p);
Amb(p) = { 518(“11) — Spt(p), fc;;1 Pls(-p) 2 Spt(p); (25)

In words, it is a measure of the amount of overlap of the evidential intervals of a proposition
p and its negation, and thus represents the evidence that does not help to support or

refute p.

Now that we know how some CKSs can measure the ignorance and ambiguity of
propositions, how do they choose which control feature propositions, i.e., ff € ¥, to
support, and how much to support it? In EHCVIS, the specification of each KS contains
a list of feature propositions, f,_-k C ©¢ it can possibly express some opinion about. Just
a8 some sensors in the real world can only perceive certain bandwidths of energy, some
KSs can only observe certain features. As a consequence, each KS is capable of discerning
only a subset of the label hypotheses of interest. A CKS uses the information in a KS’s

specification to help decide how much support to give to control feature propositions,

f!‘ C 84 . Let us provide an example of how this is accomplished.

Suppose our ambiguity resolving CKS has measured the ambiguity of, say ten, disjoint

label hypotheses of interest and determined that the system is most ambiguous about
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two of these label hypotheses, say ps, ps € ©g. Consider the following partial KS
specification that might be used by our ambiguity CKS:

K Sy : For the set of observable feature propositions # = {f}, fZ},
x:l-(f%) = {P2, P3};

x1(/2) = {ps};

K S5 : For the set of observable feature propositions 75 = {1},

xs(f3) = {ps, pe}-

To reduce the ambiguity between ps and ps our system must obtain information from
KSs that support either py or ps but not both, or support either —py or —pg but not
both. We can see from the above partial KS specifications that KS] cannot provide such
information. If K Sy supports any subset of the feature propositions in #; then both py
and pg become less plausible. Conversely, ps gains no support over pg, or vise versa,
if K8y refutes any subset of the feature propositions in 7 . Unlike KS;,if KS; gives
support to any subset of its feature propositions then the amount of ambiguity between
the two label hypotheses will be reduced. Thus, pursuing those actions that result in
invoking K.Ss is more appropriate than pursuing those actions that invoke KSj. The
manner in which CKSs compute the degree to which any alternative should be supported
is discussed in [44]. However, in a later section we shall present a simple example to

illustrate the effect of the methods some CKSs use.

5.2.3 Decision criteria. As a consequence of CKSs expressing their opinions in

terms of mass functions M , an evidential interval is induced over the alternativesin ©,4.
Selection of the appropriate action requires that these evidential intervals be evaluated. _
Although a complete classical utility theory for evaluating an interval representation of
belief is not yet available, it is possible to choose actions on the basis of several simple

criteria. For instance, the best action is obvious for those alternatives with nonoverlapping
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intervals. For those choices with overlapping intervals, further evaluation is called for.
There are many utility- vs. cost-based theories that might be used to select an action on
the basis of beliefs that are constrained by an evidential interval. Although the details of
how such theories might be employed are beyond the scope of this paper, we can describe

the simple decision measure and criterion that EHCVIS uses.

This measure is motivated by the intuition that we should choose an alternative if the
sumn of the support for it minus the sum of the support for its competitors is greater than
this same measure for the remaining alternatives. And the decision criterion used is to
pursue the alternative that is indicated by the proposition having the largest value of the
above measure. Since Spt and Dbt represent the sumn of the support for and against a
proposition, respectively, we can characterize this decision measure and criteria through
the following equation:

MAX [Dec(a) = Spt(a) — Dbt(a)). (26)
aES 4

For the case where this measure is the same for two or more alternatives, a random choice

is made.

Unfortunately, an epistemological justification for this decision criteria cannot be of-
fered at this time. Other people have suggested that just the plausibility, Pls, of an
alternative is adequate [2]. However, our view is that further investigation might re-
veal that a combination of evidential measure might be more appropriate under different

circumstances.
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5.3 PHASE THREE:

5.3.1 Pursuing an alternative. A general purpose computer vision system rust
have a relatively large and sophisticated set of KSs in order to interpret images of complex
scenes [19]. This is due, in part, to the need for a variety of information that typically
cannot, be provided by a single source. The process of building the necessary KSs remains
. an active area of research [45|, [19], [11], [12], [22], [5]. And although there have been a
number of significant advances in the number and quality of KS-like feature extraction
procedures, the number of sufficiently sophisticated and diverse KSs that are needed to
implement a general purpose computer vision system is not readily available. Due to this
lack of resources, pursing ar action in EHCVIS is accomplished by simulating the tasking

or invocation of KSs. Let us describe this process.

5.3.2 Simulating the invocation of KSs. EHCVIS has a pool of nineteen KSs
that are capable of providing a variety of information. A subset of these KSs are typically
called low-level feature extraction processes. In aggregate, these KSs can express opinions
about a region’s texture, spectral properties, two-dimensional spatial relationships to other
regions, and its polygonal shape. The remaining subset of KSs are typically considered
higher-level sources of information, called object KSs. The object KSs, in aggregate, can
express opinions about the presence or absence, in a region, of visual entities such as roofs,
houses, grass, tree crowns, and so on. Objects can be viewed, in a sense, as features of
more complex scenes such as residential neighborhood scenes, farm scenes, and city scenes.
Just as objects exhibit certain shape, spectral, and texture features, so can complex scenes

exhibit features such as, houses, roofs, grass, and roads.

Every region in a segmented image that the system is expected to interpret contains
nineteen mass functions, one for each KS. Each mass function represents a subjective
estimate of the best opinion the corresponding KS can possible convey if it were asked to
extract feature information from some region under examination. These subjective mass

functions are generated and stored in an image data-base prior to interpretation.
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These mass functions were derived by evaluating an empirical and or theoretical analysis
of the algorithms it is expected a real KS will use when forming opinions. This evaluation
process was repeated for each KS and for all the regions that were knoﬁ to contain a
specific object the system might be expected to discern. For regions containing multiple
objects a different set of statistics would be computed and as a consequence a different
mass function would have been generated and stored in the image data-base. The details

of the process are explained in [44].

Forming the best opinion a KS might convey is not the objective of our simulation.
Rather, the data-base of subjective mass functions is required in order to begin the simu-

lation process that can be summarized in the five steps shown in Figure 5.

We recall to the readers attention that one of our our motives for using the DS theory
is due to its increased ability to deal with limited evidential information. To the extent a
KS’s opinion is modeled with respect to these three characteristics of information, we will
be able to evaluate the viability of the DS theory in our task domain. Therefore, what we
are truly simulating is the degradation of a2 KSs opinion (i.e., mass function) with respect

to certainty, precision, and accuracy.

The degradation process can be modeled as a function, D, of five parameters, ©g,
a mass function M, a certainty factor (cer), a precision factor (pre), and an accuracy

factor (acc). In equation form:
D (&g, M, cer, pre, acc) = M, (27)

where M’ is the degraded mass function. The cer, pre, and acc parameters specify
the extent to which M is to be degraded with respect to the three characteristics of
information. Let us provide our intuition and computational definition of how a mass

function M is degraded to M.
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A KS should attribute a greater portion of its unit mass to a proposition, say p C
B¢, the more certain it is about the truthfulness of that proposition. Conversely, a
proportionately smaller amount of mass should be attributed to p if a KS is less certain
about the proposition’s truthfulness. In our simulation of the degradation in a KS’s mass
function, the cer parameter is used to determine the degree to which a KS’s opinion
should be made less certain — i.e., how much to reduce the amount of mass that has been
attributed to a proposition. This is reflected in the following equation. For 0 < cer <1,
the degree to which a KS’s mass function M is to be degraded with respect to the certainty

of a proposition p:

cer * M(p), for p C Bg;

M6) = { M(oa) L5 - cor) M), e o (28)

Notice that the amount of mass that was originally attributed to total ignorance (i.e.,
@ ) is increased by the sum of the mass that was “taken” away from proper subsets of

©¢ - Doing so insures that the constraint in equation 11 remains satisfied.

A KS that attributes a non zero amount of mass to a singleton in a frame is said to
be expressing the most precise opinion possible with respect to that frame. Conversely, a
KS that attributes a non zero amount of mass to © is expressing the least precise opinicn
possible. That is, attributing any non zero mass to a set of cardinality one is expressing
a very precise opinion. And the precision of that opinion decreases as the cardinality of
that set increases. The pre parameter in our simulation process controls the cardinality
of a proposition p - i.e., its corresponding subset of ©¢ . For 0 < pre < 1, the degree to

which a KS’s mass function M is degraded with respect to a proposition p is given by:
M'(p) = pU ran-set-gen(©g — p, pre), (29)

where for some set, s C O¢g, ran-set-gen (s, pre) returns a random set s’ C Og of

cardinality (1—pre)+|s|. Since our system does not have any particular knowledge about
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how a KS’s opinion becomes less precise the ran-set-gen function randomly selects the

propositions to include in s.

A KS is said to be expressing an inaccurate opinion if it attributes a non zero amount
of mass to any proposition that is not true with respect to the available evidence. Fur-
thermore, the more mass it attributes to a false proposition the meore it is in error. In our
simulation scheme, for 0 < ace < 1, the degree to which a KS’s opinion is accurate, the

degradation of that opinion with respect to accuracy is given by:

M'(=p) = (1 - acc) * M(p);
(30)
M'(p) = ace + M(p).

We argue that the cer, pre, and acc parameters allow our simulator to model most,
if not all, of the ways opinions might vary when expressed in terms of propositions in a
frame of discernment. By specifying these three parameters, it is possible to characterize

any degradation in an opinion that might be expressed by any real or imaginary KS.

Returning to Figure 5, the process of simulating the invecation of KSs involves first
retrieving, from an image data-base, a mass function for each KS that is invoked. Next,
each of these mass functions is degraded with respect to the cer, pre, and acc parameters.
The result is a set of degraded mass functions that are then pooled using Dempster’s rule.
Finally, the consensus opinion formed by Dempster’s rule is input to an inference engine

that updates the Spt and Pls of propositions in 8¢ .

5.3.3 Long Term Memory. The frame O is the system’s relatively static rep-
resentation of the world and domain knowledge that is needed to “understand” images
- commonly called long term memory (LTM) [41], [23]. LTM is the representation of

the semantic relationship between observable features and the visual entities the system
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might try to discern. In EHCVIS, the set of label hypotheses (i.e., propositions) in LTM
is defined to be:

O©¢g = {tree-crown-scene, sky-scene, shutters-scene, roof-scene,

road-scene, residential-scene, house-scene, bush-scene,
(31)

Pufiton-house-scene, Griffith-house-scene, Brown-house-scene,

front-wall-scene, side-wall-scene, grass-scene}.

The propositions Puffton-house-scene, Griffith-house-scene, and Brown-house-
gcene represent particular house scenes that are associated with a particular individual
or place. This is in contrast to a generic house scene as represented by the proposition
house-scene. The reason -scene appears as a suffix to the above propositions such ag
roof-scene, sky-scene is that for a particular image or subset of regions in an image,
the system might only be observing these objects. How a conjunction of label hypotheses

that are not explicitly represented in ©¢ can be instantiated in STM is explained in {44].

There are five feature spaces, Fy through Fs, any subset of which might be used to
partition ©g. Enumerating all of these feature spaces and their corresponding sets, 7
through 75, of feature propositions would be excessive for this paper. However, we shall

enumerate a subset of LTM to help make the remaining discussion more lucid.

The following three feature spaces are associated with the indicated types of visual

information that might be used to discern propositions in ©¢g :
F; Objects: such as tree crowns, roofs, roads, and so on;
Fy Spectral: such as grass green, sky blue, road black, road grey, and so on;
F3 Texture: such as highly textured grass, smoothly textured sky, and so on.

The following is an enumeration of some of the feature propositions in the above

feature spaces:
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#1 has-sky-as-part, has-grass-as-part, has-walls-as-part,
72 has-sky-blue-as-part, has-grass-green-as-part,

73 has-bush-angular-line-density-as-part,
has-house-angular-line-density-as-part,

has-sky-angular-line-density-as-part, .

The reason the spectral feature proposition has-sky-blue-as-part, for instance, speci-
fies the object sky is due to two reasons. The first is that f;here is no universally standard
quantification of the color blue in an image that was produced by some uncalibrated pho-
tographic process. Such photographic images are commonly used to generate a digitized
image of the original scene. The second is that without this calibrated information, the
only way to currently capture some measure of “blueness” is to sample a collection of
regions in images that contain only blue skys. As a consequence, what one has actually
measured is not blueness, rather sky-blueness. And in a similar fashion, one can only

measure grass-green, grass-blueish-green, road-grey, and so on.

For each F; we must construct a x; to partition ©¢ . Again, a complete enumeration

is excessive, however we shall list a subset of the x s actually defined in EHCVIS. For 7 :

x1(has-sky-as-part) ={sky-scene, road-scene,
residential-scene, Puffton-house-scene,
Griffith-house-scene, Brown-house-scene};
(32)
xl(has-grass-as-part) ={grass-scene, road-scene,

residential-scene, Puffton-house-scene,

Griffith-house-scene, Brown-house-scene},
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and so on. And finally for 73:

xa(has-tree-crown-angular-line-density-as-part) =
{tree-crown-scene, road-scene,
residential-scene, Puffton-hounse-scene,
Griffith-house-scene, Brown-house-scene};
xz(has-grass-angular-line-density-as-part) = (%)
{grass-scene, road-scene,

residential-scene, Puffton-house-scene,

Griffith-house-scene, Brown-house-scene},

and so on.

The output of the simulation process is a set of degraded mass functions. These
mass functions are then combined by Dempster’s rule to form a consensus about which
label hypothesis is appropriate to associate with the current region of interest. The result
of applying this rule is input to an inference engine that updates the Spt and Pls of
propositions in LTM. After the updating is completed the results are evaluated in phase

four.

5.4 PHASE FOUR:

5.4.1 Evaluating ITM. The evaluation of LTM and the state of the system up

to this point can be characterized in four steps.

STEP 1: The first step involves determining if there was sufficient conflict between
KSs to justify verifying the KSs. The details of the verification process in
EHCVIS is complex — see [44]. However, if the KSs have been verified or

the conflict they generate is below sorne threshold, then proceed to Step 2.
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STEP 2: In the second step, the systemn tries to determine if the consensus opinion
that was formed over LTM is sufficient to justify instantiating a label hy-

pothesis — i.e., the Spt of one or more label hypotheses is above some min-

imum threshold. If so, then instantiate the hypotheses in a representation

called short term mernory (STM). Then place on the goal stack the goal

of locking for objects that can possibly coexist with the object hypotheses

that were previously instantiated in STM, and then go to PHASE ONE,

else go to Step 3.

STEP 3: If the system reaches this step, then it is trying to reduce the amount
of ambiguity, dissonance, or ignorance for a subset of label hypotheses in
©¢ . If the maximum number of attempts to instantiate a hypothesis has
not been reached, then the goal of obtaining additional information about
the currently best label hypotheses is put on the goal stack. Then the
system proceeds to PHASE ONE else to Step 4.

STEP 4: This step is reached if EHCVIS has exhausted the maximum number of
attempts to instantiate a hypothesis. At this point, the goal of identifying
objects the system has the best chance of discerning is put on the goal
stack. Then the system proceeds to PHASE ONE else the interpretation
process is terminated if the maximum number of attempts at interpreting

the entire image iz exceeded.

It is clear that the evaluation phase of our system plays an important role in controlling
the interpretation task. Indeed, the selection of goals and their constraints is dependent
on factors that our system does not yet taken into account. Some of the limitations and

consequences of this are discussed in [44].

This completes the discussion of EHCVIS and how both the DS and ER technologies
have been integrated into the systermn’s mechanisms for reasoning about the control of the

interpretation process and reasoning about the visual entities it is expected to perceive.
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Next we shall briefly discuss the interpretation experiments that were conducted and

summarize their results.

6 INTERPRETATION EXPERIMENTS

There are several objectives of the research and experiments that are reported here

and in [44]:

1) to demonstrate that certain types of incompletenesses in LTM can be detected

when certain “evidential measures” and verification procedures are employed;

2) to demonstrate that the system tends to degrade smoothly as the quality of the

information it must reason from becomes less certain, precise, and accurate, and;

3) to demonstrate that a system’s performance is improved (i.e., fewer resources are
used, better interpretations, or a combination of the above) as more evidential-

based control strategies are used.

In this paper, we shall begin to emphasize the later two objectives by describing our

experimental design, method, and results.

Over one hundred and forty interpretation experiments were conducted on three dig-
itized and segmented color monocular images of outdoor natural scenes that are similar
to Figure 1. Each experiment involved selecting a value for each of the three degradation
parameters and then tasking EHCVIS to interpret the image. For instance, we typically
started a series of experiments with cer = pre = ace = 1, then after the system did its
best at completing the interpretation task, the degradation parameters we set to cer = .9,
and pre = acc = 1, then cer = .8, and pre =acc =1, ..., cer = 1,pre = B,acc =1,
and so on until cer = pre = acc equaled .4 or .5. This sequence of degradation in the
three parameters was conducted twice for each image. That is, once without using any
control strategies to establish a baseline level of performance. The remaining times the

system was allowed to employ various combinations of control strategies. This allowed
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us to compare performance between the use of various control strategies and no control

strategy.

For each experiment, the KSs in the systermn would be most certain, precise, and
accurate when cer, pre, and acc equaled one, respectively. Conversely, the KSs became
less certain, precise, and accurate as cer, pre, and acc approached zero, respectively.
Experiments were not conducted with parameter values for which it was clear the system

would not be capable of interpreting the image.

Several metrics were used to measure the system’s performance, one being the number
. of correctly instantiated regions. But before we discuss the system’s performance, let
us briefly annotate a portion of the system’s attempt at interpreting the image and its

segmentation in Figures 1 and 2 respectively.

6.1 ANNOTATED INTERPRETATION TASK

The portion of an interpretation experiment described here is intended to demeonstrate
one important point. That by taking advantage of the additional information the DS
makes readily available, our system was able to identify objects that were previously

undiscernible when this information was unavailable.

Consider Figures 6 through 12. At a point early in the process of trying to interpret
region Rj4 of the segmented image in Figure 6, the system was unable to disambiguate
whether that region is the side-wall-scene or the front-wall-scene of the house in
the image. During this experiment, the cer, pre, and acc parameters were set to 1,
.7, and 1, respectively. That is, all the KSs were as certain, and accurate as possible,
however, they were made 30% less precise than they could be. Figure 7 shows that after
reaching the maximum number of attempts to interpret the region the system remained
most ambiguous about the side-wall-scene and front-wall-scene label hypotheses.
Thus, without using a control strategy to help resolve this ambiguity the object in region

Ry4 was not identified. As illustrated in Figure 8, the only way the system would be
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capable of resolving this ambiguity would be to obtain information that distinguishes

side-wall-scenes from front-wall-scene.

As mentioned earlier, as part of its specification, each KS can typically only attribute
mass to a subset of the feature propositions in some feature space. In Figure 9, we see
that K S can attribute mass for or against the has-walls-as-part, has-side-walls-
as-part, and has-front-wall-as-part feature propositions. In contrast, we also see
in Figure 9 that the only feature proposition K S; can attribute mass for or against is
has-house-~-as-part. Therefore, at this point in the interpretation, K Sg appears to be

better suited for resolving the ambiguity of current interest.

However, by allowing the system to use its ambiguity resolving control strategy, we
can begin to see in Figure 10 how the system might be able to label R;4. In Figure 10,
the two control strategies used in this experiment are underlined at the top of the figure.
The two CKSs that are responsible for measuring Igr, and Amb are CKSo and CKS,4
respectively. The set of possible actions the system might take (i.e., 8 4) is enumerated
in the list under the title “Pruned *action-prop-names.” These alternatives were the
same as those available to the system when the above control strategies were not used.
After both CKS 3 and CKS 4 have made their respective measurements, they construct mass
functions that reflect their opinion about which alternatives they believe is the best to
pursue. We see that CKS 2 believes very strongly that taking those actions that invoke K Sg
is more appropriate than taking those actions that do not invoke KSg. Likewise, CKS 4
believes, almost as strongly, the same as CKS 5. We see in Figure 11 the result of pooling
these two opinions over © 4 . That is, the consensus opinion strongly indicates that taking
either action a; or as is appropriate because they result in tasking K Sg, which has the
best chance of resolving the ambiguity of concern. The results of the system actually
pursuing ag, which was randomly chosen from {a;, ag}, is illustrated in Figure 12. The
opinion of KSg was such that it supported a proposition that distinguished front-wall-
scene from side-walls-scene to a degreelthat allowed the system to instantiate the

front-wall-scene label hypothesis for Ry4.
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There was no guarantee that K.S; would have helped discern the propositions of
interest. Rather, among the available KSs it was the most likely to provide the system
with the needed information. The ambiguity control strategy biased the system to take

those actions that were most likely to result in obtaining the desired information.

The portion of an actual experiment just presented‘illustrates how EHCVIS uses the
DS and ER technology to accomplish two major interpretation tasks that were described
earlier in this paper: 1) to reason about what label hypotheses to assign to regions in an
image and; 2) to decide how its limited resources should be utilized in order to complete
the image interpretation task. A number of experiments were conducted using a variety
of control strategies (e.g., reliability of KSs, dissonance resolving control strategies, and

o on) in conjunction with various combinations of degradation parameter values.

The results of the experiments we have conducted can be and are presented in a
number of ways, see [44]. Here, we shall summarize these results with respect to one
performance measure: the number of correctly instantiated regions. In addition, the
results presented in this section are with respect to experiments on the image in Figure 1.

However, the results for the remaining two images are similar to those presented here.

In summary, when all the KSs were as certain, precise, and accurate as possible, (i.e.,
cer = pre = acc = 1), and no control strategies were used, the system was able to correctly
label approximately 90% of the regions it examined. When all the KSs were as certain,
precise, and accurate as possible and the system was allowed to use any number of control
strategies, the system was able to correctly label approximately 91% to 92% of the regions
examined. This suggests that “evidential control strategies” do not significantly improve
a system’s performance when its sources operate at optimum levels. However, as the KSs
became less certain, but remained as precise, and accurate as possible, and no contrel
strategies were used, the system was able to correctly label only a.pproxima.tely 23% of
the regions examined for a 40% decrease in certainty. But when the system was allowed

to use any number of control strategies, it was able to correctly label as many as 70%
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of the regions examined for the same 40% decrease in just the certainty of a KS’s mass
function. The level of performance was qualitatively the same when the mass functions of
KSs were degraded with respect to just accuracy or just precision. The degree to which
the system’s performance was improved when the mass functions of KSs were degraded
with respect to certainty, precision, end accuracy was not as dramatic as the results just
described indicate, However, the improvement that was noticed was significant enough to

justify using these “evidential” control strategies.

In short, the results indicate that although taking advantage of the information the DS
theory provides does not significantly improve a KBS’s performance when its perceptions
are near perfect. The benefits of using such information becomes obvious as the quality
of a KBS’s perceptions degrade. That is, the degradation of the system’s performance is

significantly delayed.

7 REASONING TN COMPUTER VISION SYSTEMS: RELATED WORK

There are some important similarities and differences between our approach to reason-
ing from limited evidential information and that used by others — see for instance Nagao
and Matsuyama [28], Brooks {4], Peter Selfridge [33], Kenneth Sloan [37], Thomas Garvey
[13], Hanson and Risermnan {19}, and Levine and Shaheen [24).

The object recognition portion of Nagao’s and Matsuyama’s system uses, in part,
a boolean approach to reasoning about the perceptions of its KS-like feature extraction
processes, Their approach is similar to ours in that semantic knowledge about objects are
represented in terms of object-features that can and cannot coexist — e.g., see table 6.1 in
[28]. The approaches differ in how beliefs about the presence or absence of object-features
in a region of interest are represented, pooled, and how inferences are drawn from these
beliefs. In Nagao’s system beliefs about the presence or absence of any particular object
feature in some region of interest is represented in a Boolean “yes” or “no” manner. This

boolean decision is made in the source (e.g., KS) that must express its beliefs. These beliefs



43
are then pooled in a logical fashion to infer which label hypothesis should be instantiated
for the region under examination. However, the difficulties of reasoning in a Boolean
fashion have been discussed in [25], [26]. In contrast, KSs in our system express, on a
continuous scale, their partial beliefs about the presence or absence of object-features in

a region. And we have previously pointed out the benefits of providing KSs with this
flexibility.

The work of Brooks [4], Peter Selfridge [33], Kenneth Sloan [37], Thomas Garvey [13],
Hanson and Riseman [19], Levine and Shaheen [24], Yakimovsky and Feldman [46], and
Zucker [48] for the most part employ mechanisms that are probabilistic, Boolean, or an
ad hoc variant thereof for pooling beliefs and drawing inferences. Therefore, it is difficult
if not impossible for their systems to take advantage, in a nice formal way, of evidential
measures such as the amount of ignorance, dissonance, ambiguity, decisiveness and so on
a proposition might exhibit. This work suggests that the performance of their systems

might improved if they take advantage of such evidential information.

8 SUMMARY

In this paper, we have discussed research on the application of both the Dempster-
Shafer theory and the concept of evidential reasoning in order to begin addressing several
problems that KBSs must deal with. Our domain of application was knowledge-based
computer vision. The DS theory and concept of ER is the foundation of a developing
framework for knowledge-based systems, such as general purpose computer vision sys-
tems, that must reason in complex domains about both their perceptions and the actions
they might pursue in order to understand their environment. Some results from a large
number of interpretation experiments were summarized to highlight a few of the benefits
of employing these technologies in a large scale knowledge-based system. That is, by using
previously unavailable information such as the amount of dissonance, ignorance, and or
ambiguity a label hypotheses exhibits, the system was able to correctly label a significantly

greater number of regions in an image.
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Despite the progress of this research, there remains a significant number of problems

to address with respect to the technology we have explored and its use in knowledge-
based systems. For instance, although the DS theory has relieved us from the burden
of specifying complete probability models, a formal theory for generating mass functions
remains unavailable. We believe that this later problem is more tractable than the former.
Another concern is, given the independence requirement of Dempster’s rule, is there a
formal model by which dependencies can be automatically accounted for in a frame of
discernment? And finally, but not the least of which is, the lack of a computational
theory for the integration of “fuzzy-based” approaches to uncertain reasoning with the

theory of belief functions [47].
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Figure 1.

A MONO-CHROMATIC RENDERING OF A TYPICAL STATIC 2-D COLOR IMAGE
OF AN OUTDOOR NATURAL SCENE.
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Figure 2.

AN EXAMPLE SEGMENTATION OF THE IMAGE IN FIGURE 1.
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PHASE 1

PHASE 2

PHASE 4

D~

o Pursue Chosen Alternative

« Goals

o Generate Alternatives

¢

» Control Strategies

-

» Build Control Knowledge (.., ©.)

« Obtain Control-Related Info
(i.e., invoke CKSs)

« Pool opinions of CKSs

« Choose Which Action to Pursue

-

» Simulate Invocation of KSs
« Pool Opinions of KSs
e Draw Inferences over LTM

PHASE 3

-

» Evaluate Inference results in LTM

o Generate New Goals

« Instantiate Hypotheses in STM
» Terminate Interpretation Process

U

Figure 3.

A SYSTEM FLOW DIAGRAM OF EHCVIS




49

GOAL-NAME/ID KS selection constraints

(start-up ((rel 0.7 1)...)(—"
((conj (loc-above 0 200 0 200)
(size 10000 65000))...))

Region selection constraints

Regions that satisfy the constraints

KSs that sat-
isfy the constraint

KS,

KS,

Figure 4.

EXAMPLE GOAL AND CONSTRAINTS.
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2
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Degrade KS's mass func- . Dempster’s Rule -‘
tion.
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Inference Engine
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F,: spectral attributes

Figure 5.

SIMULATING KS INVOCATIONS.
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System is trying to interpret region #14.
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Figure 6.

SEGMENTATION OF AN IMAGE THE SYSTEM IS TRYING TO INTERPRET.
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preciseness parameter value m.7

invoke KSB80&KSTOEKS30"R14 ==> ((KS80 K570 KS30) (R14))

LTM inference results

tree-crown-scene 0.0 , 0.0] L |
sky-scene [c.0 , 0.0] 10-a--- e ] |
side-valls-scene . [0.0 , 1.0] [esessveesssnvrseneeey
shutters-scene {c.0 , 0.0] 18-cea- sececcscaceand]
roof-scene [0.0 , 0.0) {¢-cenocccacnccecccas]
road-scene [0c.0 , 0.0] jo-mmem csmeemcrvences]
puffton-house-scene {0.0 , 1.0-3] 1#-cece--- cemvemsssea]
house-scene (0.0 , 1.0-3] Il¢-c-cccacccccaccnca-]
griffith-house-scene {0.0 , 1.0-3] l#-ccccecacccccncacea]
grass-scene [0.0 , 2.60-2] l8cccccccecccaccanca]
{front-vall-scene [0.0 , 1.0) jedessenneenesneonnen)
bush-scene [0.0 , 0.0] |$-ccccncccecccocance]
brown-house-scene [0.0 , 0.0] |#=cce- ce-ecscccccaa=]|
a-road-scene (0.0 , 0.0] |#-cmemcoccecccccecn-]

Figure 7.

CURRENT STATE OF INTERPRETATION PROCESS WITHOUT USING ANY CON-
TROL STRATEGY.
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Need information that distinguishes side walls from
front walls.

tree-crown-scene Can distinguish

side-walls-scene

Cannot distinguish

road-scene

front-wall-scene

Can distinguish

a-road-scene

Figure 8.

ILLUSTRATION OF INFORMATION NEEDED TO DISCERN AMBIGUOUS LABEL
HYPOTHESES.
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Information KSs can possibly provide;

(xss
Property List: (preconditions: nil

type: object
KS-language-props:
(has-wslls-as-part
} has-side-walls-as-part
hll-front-vall-nl-part)

cur-certainty-prob: 1
cur- precisenesss-prob: .7
cur-accuracy-prob: 1 )

RSN NS R S SRS E SR S S EEaOSEIRETE ERCERECEOEREEEEREEE
(Ks1
Property List: (preconditions: nil
type: objsct

KS-language-props:
(bas-house-as-part)

cur-certainty-prob: 1
cur~ preciseness -prob: .7
cur-accuracy-prob: 1 )

Figure 9.

KS SPECIFICATIONS.
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Control strategles & CKS mass-functions:

TYPE OF INFORMATION REPORTED: estrategies

(most-igr-about-prop best-ambiguity-resolving-kes-is)
= W ]

TYPE OF INFORMATION REPORTED: Pruned #action-prop-nanes

(invoke"KS704KS30RKSBO&KSO0 R14 invoke KSBLKS304KSB0KKSO0"R14
invoke "KS70AKSBO&AKS307R14 invoke “KS6EKS70&KS308KS00"R14)

TYPE OF INFORMATION REPORTED: The mass functions returned by
the last invoked CKSs

((CKS2 <== most-i r-about-proe

(((invoke "KS64KS704KS304KS90"R14 invoke KSTO4KS80&KS30°R14
invoke K56&4KS30&K580&KS90"R14

invoke "KS7T04KS304KSBOAKSPOR14) .1)
((invoke KS8&KS70&KS304KSO0"R14
invoke~KS6AKS304KS804KSPO0"R14) R

(CKS4 <o= best-ambiEitz—resolving-ks-is
(((invoke KSB&KS30EKSB0KSPO R14
invoke " KSBLKS7ORKS30&KS00"R14) 0.8687)

((invoke "KS70LKS304KSB0AKSO0 R14 invoke“KSTOAKKSB80KKS30"R14
invoke "XSEEKS30&KSBOAKSSO"R14
invoke KSEAKE704KS30LKSO0"R14) 0.333))))

Figure 10.

OPINIONS FROM IGNORANCE AND AMBIGUITY CKSs.
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Combining CKS2’s & CKS4’s mass-functions:

Let: ‘
@, = invoke-KSB&4KS70&KS30&KS560-R1id
d, = invoke-KSB8&KS30LKS80&KSH0-B14
ad, = invoke-KS7TOEKS30&KS804KS00-R14
A, = invoke-KS7TOKKSB80&LKS30-R14
4= a,va,va,Vva,
F,: best-ambiguity-resolving-ks
F,: most-igr-about-prop

M, =qa, va,) .7

T (B4 e -
o2l
Mg, = (@, V @;) 965 - 7! ;
©4 -030) " op “ ;
4 o
7

\ 4

M, =qa, vay -9)-\
B4 -1

\_

Figure 11.

POOLING THE OPINIONS OF THE IGNORANCE AND AMBIGUITY CKSs.
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Results of taki tion:

TYPE OF INFORMATIOR REPORTED: sction system will take
invoke“KSE6LKS30AKSBOAKSG0"R14 <== ((KS6 KS30 KSB80 KS90) (R14))

" L'T™M inference results

tree-crovn-scene [0.0, 1.-3] !#-c-cccnme-- ceccre=ce|
sky-scene [0.0, 1.0-3] 1#-cocecnce- cemm—- -
side-wvalls-scene 0.0 , 0.3) 1888888 mcccccncnn" !
shutters-scene [0.0 , 0.0] {4eccomccccaccccaaca- !
roof-scene 0.0 , 1.-3] I#=-ccccccccccccana.- !
road-scene - [0.0, 1.-3] I#-cecccec-- cemeo= “-
puffton-house-scens [0.0 , 3.0-3] I#=-crecccmcccncccaa- 1
house-scens [1.e-3 , 4.0-3] 1#-cecmcecmccnncaa- --1
griffith-house-scene [0.0 , 3.0-3] (#--ececccccnncocnc.- !
grass-scene [0.0, 1.-3] It-crccccccnaa- e Y
front-wall-scene [0.656 , 0.999] l-=-ce-eccee-- ZIII11Y!
bush-scene [0.0, 1.0~3] 1#ecccccccacaa- commne]
brown-house-scene 0.0 , 3.0-3] 1s-c--- e et |
a-road-scene [0.0, 1.6-3] {#eccmrccccmcaccaa- --1

TYPE OF INFORMATION REPORTED:
instantiated hypothesis, instantiated regionms,

((fzont-wall-scene) R14)

Figure 12.

RESULT OF USING AMBIGUITY CONTROL STRATEGY.
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